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Abstract A sensitive electrogenerated chemiluminescence
peptide-based (ECL-PB) biosensing method for the determi-
nation of protein was developed by employing peptide-
integrating Ru(bpy)3

2+(bpy=2,2′-bipyridine)-functionalized
gold nanoparticles (Ru(bpy)3

2+-AuNPs-peptide) as nanoprobe.
Cardiac troponin I (cTnI), a reliable clinical biomarker for the
detection of cardiac injury, was chosen as target protein, while
a specific binding peptide (CFYSHSFHENWPS) was used as
molecular recognition element. AuNPs were firstly functional-
ized with Ru(bpy)3

2+ through electrostatic interactions be-
tween citrate-capped AuNPs and Ru(bpy)3

2+ to form
Ru(bpy)3

2+-AuNPs aggregates and then functionalized with
peptide through Au-S bounds to formRu(bpy)3

2+-AuNPs-pep-
tide nanoprobe. AuNPs not only can capture numerous signal-
generating molecules, resulting in high ECL intensity but also
can capture a significant amount of the peptide, providing poly
bindingmotif. The specific capture peptide was self-assembled
on the surface of a gold electrode and then incubated with the
target cTnI and Ru(bpy)3

2+-AuNPs-peptide successively. A
sandwich-type peptide/cTnI/Ru(bpy)3

2+-AuNPs-peptide con-
jugate was formed on the surface of the electrode and an
ECL signal was obtained in the presence of tri-n-propylamine.
The novel biosensing method facilitates the sensitive detection
of cTnI in the range from 3.0×10−12 g mL−1 to 7.0×

10−11 g mL−1 with a low detection limit of 0.5 pg mL−1. This
work provides a promising strategy for the determination of
proteins with simplicity, high sensitivity, and selectivity.
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Introduction

Cardiac troponin I (cTnI), a part of the troponin complex
present in cardiac muscle tissues, is a reliable biomarker of
cardiac muscle tissue injury and is widely used in the early
diagnosis of acute myocardial infarctions [1, 2]. Although an
increase in cTnI concentration from 10 pg mL−1 to over
1 ngmL−1 into blood vessels within a few hours occurs during
the damage to cardiac muscles, it is present at ultralow levels
following the onset of acute myocardial infarction symptoms.
Therefore, it is needed to develop sensitive methods for mon-
itoring cTnI concentration during early stages [3]. Up to now,
a lot of methods have been utilized in the determination of
cTnI such as colorimetric [4, 5], fluorescent [6, 7], electro-
chemica l [8 , 9 ] , chemi luminescence [10] , and
electrogenerated chemilminescence (ECL) [11–14]. Among
them, ECL has attracted attention in protein biosensing due
to advantages such as a very low background signal, high
sensitivity, and good temporal and spatial control [15, 16].
For example, two ECL immunosensors were reported by
Cui et al. for human cTnI detection using luminol and N-
-(aminobutyl)-N-(ethylisoluminol)-functionalized gold nano-
particles (AuNPs) as signals [11, 12]. An ECL immunoassay
was developed by Smith for the detection of rat TnI in serum
[13]. Ruan reported an ECL immunosensor for the detection
of cTnI by using self-enhanced ECL luminophore [14]. ECL
immunoassays are typically conducted by employing
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antibodies as molecular recognition elements. However, anti-
bodies exhibit certain limitations. For instance, the expensive
production in mammalian cells and the stability in harsh en-
vironments of the antibody make it desirable to seek alterna-
tive affinity molecules [17].

Short linear binding peptides selected using phage dis-
play techniques have received much attention in protein
analysis due to the cost-effective synthesis, stability and
resistance to harsh environments, and facile molecular
level amenability, as compared to antibodies [18]. A linear
peptide (with the sequence FYSHSFHENWPS) was first
selected using polyvalent phage display by Park et al. that
could selectively bind to human cTnI with nanomolar af-
finity [19]. A homogeneous ECL peptide-based method
for the detection of cTnI has been developed in our lab
using the specific peptide as a molecular recognition ele-
ment [20]. However, the sensitivity is limited because one
ECL signal per peptide is employed. We recently reported
a homogeneous ECL method for cTnI using liposomes as
carriers of the ECL signal reagent, in which a low detec-
tion limit of 4.5 pg mL−1 was obtained for cTnI because
liposomes can encapsulate large amounts of reporter mol-
ecules (1.9×107 ruthenium derivatives/liposome) [21].
Compared with conventional ECL methods with one label
per recognition element, the aforementioned technologies
show enormous signal amplification, but the complicated
labeling and analytical procedures required the need for
novel, simple, and sensitive methods for cTnI in clinical
settings.

Since the use of AuNPs for biological uses was first dem-
onstrated by Mirkin et al. in 1996 [22], AuNPs have been
widely used in the design of biosensors [23–25]. Generally,
AuNPs are employed in the modification of electrodes [26,
27] as they provide a large surface area and facilitate the elec-
tron transfer between active molecules and electrodes. More-
over, AuNPs have been employed as carriers for conventional
signals such as luminol [11, 28] and ruthenium complexes
[29] thus affording ECL signal amplification. Since many
luminol moieties with chemiluminescence activity were coat-
ed on the surface of the AuNPs, a low detection limit of
2 pg mL−1 for cTnI was obtained via the signal amplification
by the AuNPs. Tris(2,2′-bipyridine) dichlororuthenium(II)
(Ru(bpy)3

2+) has received considerable attention as an ECL
signal reagent because of its higher luminescence yield and
good electrochemical and photochemical stability [30].
AuNPs can be functionalized with Ru(bpy)3

2+ and derivatives
via electrostatic interactions or self-assembly and have been
used in chemical sensors [31–33], immunosensors [34], DNA
biosensors [35–37], and cell bioassay [38].

With our interest in the development of ECL peptide-based
(ECL-PB) biosensors, we design a peptide-integrating
Ru(bpy)3

2+-functionalized gold nanoparticles (Ru(bpy)3
2+-

AuNPs-peptide) nanoprobe and develop a sensitive and

simple method for the detection of cTnI (Fig. 1). In this work,
the characteristics of Ru(bpy)3

2+-AuNPs and Ru(bpy)3
2+-

AuNPs-peptide and the analytical performance toward cTnI
are presented.

Experimental

Reagents and apparatus

Peptide CFYSHSFHENWPS (MW=1640.77, Fig. S1 in
Supporting Information) was designed according to Park
et al. [19], which contained a terminal thiol-containing cyste-
ine residue to facilitate self-assembly on the surface of the
gold electrode or AuNPs, and purchased from Sinoasis Phar-
maceuticals, Inc. (China). Cardiac troponin I (cTnI, human
heart) and skeletal troponin I (sTnI) were obtained from
Abcam Inc. (Cambridge, UK). C-Reactive protein (CRP),
chloroaur ic ac id (HAuCl4) , t r i s (2 ,2 ′ - r ipyr id ine)
dichlororuthenium(II) (Ru(bpy)3Cl2, Ru(bpy)3

2+), and bis(2,
2′-bipyridine)-4,4′-dicarboxybipyridine-ruthenium di(N-
succinimidyl ester) bis(hexafluorophosphate) (Ru1) were ob-
tained from Sigma-Aldrich (USA). Albumin chicken egg pro-
tein was obtained from Sino-American Biotechnology Co.,
Ltd. (China). Prostate-specific antigen (PSA) was purchased
from Fitzgerald Industries International, Inc. (USA). Human
immunoglobulin G (IgG) and bovine serum albumin (BSA)
were obtained from Beijing Biosynthesis Biotechnology Co.,
Ltd. (China). 6-Mercapto-1-hexanol (MCH), tripropylamine
(TPA), and sodium citrate were purchased from Sinopharm
Chemical Reagent Co., Ltd (China).

Phosphate-buffered saline (PBS; 0.1 M) consisted of
0.1 M NaH2PO4, 0.1 M Na2HPO4, and 0.1 M KCl
(pH 7.4). Phosphate buffer (PB; pH 7.4; 10 mM)
contained 10 mM NaH2PO4, and 10 mM Na2HPO4 was
used as the washing buffer. Other reagents were of ana-
lytical grade, and millipore Milli-Q water (18.2 MΩ cm)
was used in this work.

ECL and electrochemical setups were similar to those
in our previous work [27]. The integrated ECL imaging
system included a CHI 660 electrochemical workstation
(Shanghai Chenhua Instrument Co. Ltd., China) suitable
for the needed potential for the ECL-triggered reaction,
an Olympus IX-51 inverted microscope (Olympus cor-
poration, Tokyo, Japan) and a Magnafire model iXon +
DU-897 Andor EMCCD (Andor Technology Ltd., Bel-
fast, Northern Ireland). A JEM-2100 transmission elec-
tron microscope (JEOL, Japan) was used to obtain
transmission electron micrograph (TEM) images. Atomic
force micrograph (AFM) images were obtained with a
CSPM5500 Scanning Probe Microscope (Being Nano-
Instruments, ltd. China).
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Preparation of Ru(bpy)3
2+-AuNPs and Ru(bpy)

3
2+-AuNPs-peptide

AuNPs with a diameter of ~12 nm were prepared by citrate
reduction of HAuCl4 in an aqueous solution according to
Frens’s work [39]. In brief, 100 mL of 0.01 % HAuCl4 was
heated to boiling, and then, 4 mL of 1 % (3.4×10−2 M) sodi-
um citrate was added under stirring. The solution was boiled
for another 30 min and subsequently left to cool to room
temperature. The obtained AuNPs were stored in a dark glass
bottle at 4 °C until use.

AuNPs were firstly functionalized with Ru(bpy)3
2+

through electrostatic interactions between citrate-capped
AuNPs and Ru(bpy)3

2+ to form Ru(bpy)3
2+-AuNPs aggre-

gates and then functionalized with peptide through Au-S
bounds to form peptide-integrating Ru(bpy)3

2+-functionalized
gold nanoparticles (Ru(bpy)3

2+-AuNPs-peptide) nanoprobe.
According to the process in the Sun’s work [23], 100 μL of
an aqueous solution of 10 μMRu(bpy)3Cl2 was slowly added
into 1.0 mL of AuNP solution under vigorous stirring at room
temperature. The resulting precipitates were collected by cen-
trifugation and re-suspended in 1.0 mL water with sonication
to form Ru(bpy)3

2+-AuNPs aggregates (Ru(bpy)3
2+-AuNPs).

One milliliter of Ru(bpy)3
2+-AuNPs aggregates were

mixed with 1.0 mL of 10 mM PB (pH 7.4) containing 1.2×
10−4 M peptide and stirred gently overnight. The resulting

mixture was centrifuged and re-suspended in 1 mL of
10 mM PB (pH 7.4) to form peptide-labeled Ru(bpy)3

2+-
AuNPs (Ru(bpy)3

2+-AuNPs-peptide). The resulting
Ru(bpy)3

2+-AuNPs-peptide was stored at 4 °C until use.
The preparation of Ru(bpy)2(dcbpy-NHS)(PF6)2-labeled

peptide (Ru1-peptide) was carried out according to a proce-
dure described previously [20].

Immobilization of capture probe

A gold electrode (2.0-mm diameter) was treated according to
Carvalhal et al. [40]. A cleaned gold electrode was immersed
into 0.5 mL of 11.3 μM capture peptide solution for 2 h at
room temperature and then thoroughly washed with
10 mM PB (pH 7.4). After that, the resulting electrode was
immersed in 100 μL of 1 mM MCH for 30 min to block the
uncovered surface of the electrode and was washed with
10 mM PB (pH 7.4) to obtain the peptide-modified electrode.

ECL measurements

First, the peptide-modified electrode was immersed into
100 μL of different concentrations of target cTnI and incubat-
ed for 60 min. Next, the resulting electrode was immersed into
100 μL 5-fold diluted Ru(bpy)3

2+-AuNPs-peptide solution
and incubated for another 60 min. After each incubation step,

Fig. 1 Scheme of the fabrication of the ECL peptide-based biosensor and ECL detection of cTnI
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the electrode was rinsed thoroughly with 10 mM PB (pH 7.4)
to remove adsorption components. The ECL measure-
ment was performed at a constant potential of +0.95 V
in 1.0 mL of 0.10 M PBS (pH 7.4) containing 50 mM
TPA, and the initial cycle data was recorded. The con-
centration of cTnI was quantified by the increased ECL
intensity (ΔI=Is− I0), where I0 is the ECL peak height in
the absence of cTnI and IS is the ECL peak height in the
presence of cTnI. All experiments were carried out at
room temperature.

ECL images were obtained in 1.0 mL of 0.10 M PBS
(pH 7.4) containing 50 mM TPA under darkroom condi-
tions. The surface of the working electrode faced the
EMCCD detector, so that the light generated by the
ECL reaction could reach the detector. A linear sweep
voltammetry technique with a scan rate of 100 mV s−1

in the range of 0.6~1.1 V was applied to the working
electrode, resulting in ECL. EMCCD control and image
analysis were carried out using Andor SOLIS (v. 4.18,
Andor Technology Ltd., Belfast, Northern Ireland).

Results and discussion

Characterization of Ru(bpy)3
2+-AuNPs-peptide

In this work, Ru(bpy)3
2+-AuNPs were firstly synthesized

through electrostatic interactions between citrate-capped
AuNPs and Ru(bpy)3

2+ in aqueous medium (as shown in
Fig. 2a), and the formed Ru(bpy)3

2+-AuNPs were character-
ized by UV–vis spectrum, fluorescence imaging, and TEM.
The color of the AuNP solution is wine red (Fig. 2b, insert),
and UV–vis spectrum of AuNPs gives a broad absorption at
523 nm (Fig. 2e) [41]. TEM shows that a well-dispersed
AuNPs have an average diameter size of ~12 nm (Fig. 2b).

After treatment with Ru(bpy)3
2+, the color of Ru(bpy)3

2+-
AuNPs changed to purple (inset of Fig. 2c), and the absorption
peak of Ru(bpy)3

2+-AuNPs (537 nm) was red shifted by
~16 nm (Fig. 2f) [42]. This indicates that the aggregation of
AuNPs occurs, attributed to the fact that the positively charged
Ru(bpy)3

2+ serves as a cross-linking agent for negatively
charged citrate-capped AuNPs [23]. The aggregation or

Fig. 2 a Scheme of the preparation of Ru(bpy)3
2+-AuNPs-peptide. TEM

images of citrate-capped AuNPs (b), Ru(bpy)3
2+-AuNPs (c), and

Ru(bpy)3
2+-AuNPs-peptide (d). UV–vis spectra of citrate-capped AuNPs

(e), and Ru(bpy)3
2+-AuNPs (f) and Ru(bpy)3

2+-AuNPs-peptide (g). b Pic-
ture of citrate-capped AuNP solution, c picture of Ru(bpy)3

2+-AuNPs
solution, and d picture of Ru(bpy)3

2+-AuNPs-peptide solution (insert)
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flocculation of AuNPs upon addition of a Bcross-linking^
agent is well-documented [43]. The effective loading of
Ru(bpy)3

2+ on the AuNPs could also be visualized via fluo-
rescent imaging (see Fig. S2 in Supporting Information). The
effect of concentration of Ru(bpy)3

2+ on the color of AuNPs
was examined, and it was found that the color of AuNPs was
changed from red to purple, and red to black precipitation
change with the increase of Ru(bpy)3

2+ concentration from
10−5 to 0.05 M, respectively, which can be monitored by
TEM and naked eyes (seen in Supporting Information
Fig. S3). Here, 10−5 M Ru(bpy)3

2+ was employed when prep-
aration of Ru(bpy)3

2+-AuNPs in order to get stable and uni-
form ECL probe.

AuNPs not only provide an immobilized platform for
Ru(bpy)3

2+ but also provide an immobilized platform for the
peptide. The capture peptide was self-assembled on
Ru(bpy)3

2+-AuNPs via Au-S bonds yielding peptide-
Ru(bpy)3

2+-AuNPs nanoprobe and characterized by TEM,
UV–vis spectrum, and visual picture. A slight aggregation
occurs after the peptide conjugation, which was confirmed
by the morphologies of Ru(bpy)3

2+-AuNPs-peptide, as deter-
mined by TEM (Fig. 2d) and visual picture after the conjuga-
tion step (Fig. 2d, insert). UV–Vis spectra of the Ru(bpy)3

2+-
AuNPs-peptide showed the characteristic peaks at 280 and
542 nm, indicating that peptide has been self-assemblyed onto
AuNPs (Fig. 2g).

Feasibility of the ECL-PB biosensing method for cTnI

Figure 1 shows the scheme of the fabrication of the ECL
peptide-based biosensor and ECL detection of cTnI. A specif-
ic capture peptide was self-assembled on the surface of a gold
electrode and then incubated with the target cTnI and
Ru(bpy)3

2+-AuNPs-peptide successively. A sandwich-type
peptide/cTnI/Ru(bpy)3

2+-AuNPs-peptide conjugate was
formed on the surface of the electrode. Cyclic voltammetry
(CV) is a powerful tool to probe the nature of the modified
electrodes by using Fe(CN)6

3−/Fe(CN)6
4− couple as redox

probe [44, 45]. A well-defined redox peak of [Fe(CN)6]
3−/4−

was obtained at bare gold electrode with a peak potential sep-
aration, ΔE, of 90 mV (see Fig. S4a). After the peptide and
MCH were immobilized on the gold electrode, the oxidation
peak current decreased to 27.2 μA, and the ΔE increased to
150 mV (see Fig. S4b). After the peptide-modified electrode
was incubated with cTnI and Ru(bpy)3

2+-AuNPs-peptide, the
oxidation peak current further decreased to 25.5 and 15.0 μA,
and the ΔE further increased to 170 mV (Fig. S4c) and
270 mV (Fig. S4d), respectively. The results indicates that
the capture peptide can self-assemble on the bare gold elec-
trode and the peptide-modified electrode can react with cTnI
and Ru(bpy)3

2+-AuNPs-peptide.
Figure 3 shows the ECL intensity-potential profiles with

simultaneous CVs at different electrodes. In Fig. 3a, it can be

seen that an irreversible oxidation peak appears at 1.01Vat the
peptide-modified electrode incubating with cTnI, ascribed to
the irreversible oxidation peak of TPA. An irreversible oxida-
tion peak appears at 0.98 V after the peptide-modified elec-
trode incubating with cTnI and Ru(bpy)3

2+-AuNPs-peptide
(Fig. 3b), respectively. A negative shift of the peak potential
was observed at the peptide-modified electrode after incuba-
tion with cTnI and Ru(bpy)3

2+-AuNPs-peptide, which may be
ascribed to the presence of AuNPs on the electrode surface
[46]. The increase of the oxidation peak current is ascribed to
the reduction of Ru(bpy)3

2+ by TPA free radical formed dur-
ing TPA oxidation [47]. A very low ECL signal (a.u. 73) was
obtained at the peptide-modified electrode after incubation
with cTnI (Fig. 3b, line a), while a relatively high ECL signal
(a.u. 2336, 0.95 V) was obtained at the peptide-modified elec-
trode after incubation with 3.0×10−12 g mL−1 cTnI and
Ru(bpy)3

2+-AuNPs-peptide (Fig. 3b, line b). The original of
this ECL peak at 0.95 V is ascribed to that TPA+ (formed
during TPA oxidation) oxidize Ru(bpy)3

+ (formed from the
reduction of Ru(bpy)3

2+ by TPA free radical) to give
Ru(bpy)3

2+* [47]. As such, Ru(bpy)3
2+-AuNPs-peptide can

be used as an ECL probe to determine cTnI.

Fig. 3 Cyclic voltammograms (a) and ECL intensity-potential profiles
(b) obtained at the peptide-modified gold electrode in 0.10 M PBS
(pH 7.4) containing 50 mM TPA. a Peptide-modified gold electrode after
incubation with 3.0×10−12 g mL−1 cTnI. b Peptide-modified gold elec-
trode after incubation with 3.0×10−12 g mL−1 cTnI and Ru(bpy)3

2+-
AuNPs-peptide. Scan rate at 50 mV s−1
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In order to illustrate the amplification ability of AuNPs,
Ru(bpy)3

2+-AuNPs-peptide and Ru1-peptide were employed
as ECL probes (as shown in Fig. 4a), and the comparison of
ECL responses of Ru1-peptide probe with that of Ru(bpy)3

2+-
AuNPs-peptide probe was performed for target cTnI.
Figure 4b shows the ECL intensity-potential profiles at differ-
ent electrodes in 0.1 M PBS (pH 7.4) containing 50 mM TPA.
A high ECL signal (7256 a.u.) is observed for 7.0×
10−11 g mL−1 cTnI using Ru(bpy)3

2+-AuNPs-peptide (line a).
In contrast, a small ECL signal (3981 a.u.) is observed for a 10-
fold higher level of cTnI (7.0×10−10 g mL−1) using Ru1-pep-
tide. The ECL intensity using Ru(bpy)3

2+-AuNPs-peptide as
ECL probe is much larger than that of Ru1-peptide.

ECL imaging shows that both of the peptide-
modified electrode using Ru(bpy)3

2+-AuNPs-peptide
and Ru1-peptide as ECL probe can yield a detectable
ECL signal (Fig. 4c, d). As such, the proposed ECL

method was viable for the determination of cTnI. The
nonuniform ECL signal on the electrode surface may be
ascribed to the heterogeneity of the electrochemical ac-
tivity on the electrode surface [48] and the nonuniform
distribution of Ru(bpy)3

2+ on the surface of the modi-
fied electrode. ECL counts also show that the ECL
signal using Ru(bpy)3

2+-AuNPs-peptide as ECL probe
is much higher than that of Ru1-peptide. This is attrib-
uted to the fact that Ru(bpy)3

2+-AuNPs-peptide not only
captured numerous signal-generat ing molecules
(Ru(bpy)3

2+ molecules), resulting in a high ECL signal,
but also captured a significant amount of peptides, pro-
viding a sensing platform for cTnI [49, 50]. Moreover,
AuNPs assembled on the electrode can also catalyze the
ECL of the ruthenium complex/TPA system [51]. The
signal amplification with Ru(bpy)3

2+-AuNPs- peptide as
ECL probe is evident.

Fig. 4 a Schemes of two ECL bioassay for cTnI. b ECL intensity-
potential profiles of peptide-modified electrode using Ru(bpy)3

2+-
AuNPs-peptide (a) and Ru1-peptide (b) as ECL probes. a 7.0×
10−11 g mL−1 cTnI and b 7.0×10−10 g mL−1 cTnI. c ECL image of the
peptide-modified electrode after incubation with 7.0×10−11 g mL−1 cTnI

using Ru(bpy)3
2+-AuNPs-peptide as ECL probe. d ECL image of the

peptide-modified electrode after incubation with 7.0×10−10 g mL−1 cTnI
using Ru1-peptide as ECL probe. The measurement conditions: 0.10 M
PBS (pH 7.4) containing 50 mM TPA. Scan rate at 100 mV s−1
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Analytical performance for the determination of cTnI

Experimental parameters including applied potential and in-
cubation time were optimized; 0.95 V was chosen as the ap-
plied potential and 60 min was employed as the incubation
time in order to obtain a high sensitivity (see Fig. S5 in
Supporting Information). Figure 5 shows the ECL profiles
of the peptide-modified electrode after incubation with differ-
ent concentrations of cTnI under the optimized conditions.
The ECL intensity increased with increased cTnI concentra-
tions and was directly related to the logarithm of the concen-
tration of cTnI in the range of 3.0×10−12~7.0×10−11 g mL−1.
The linear regression equation wasΔI=37708+3138lgC (unit
of C is g mL−1) with a correlation coefficient of 0.9954. The
detection limit was 0.5 pg mL−1 (S/N=3). The proposed meth-
od exhibited more excellent analytical properties compared
with other reported method for the detection of cTnI
(Table 1). For example, the detection limit was 240-fold lower

than that obtained by homogenous ECL method in our previ-
ous report using Ru1-labeled peptide [20] and nearly 10-fold
lower than that obtained by ECL method in our previous re-
port using liposome as carrier [21]. The relative standard de-
viation (RSD) for 5.0×10−12 g mL−1 cTnI was 4.3 % (n=5).
The ECL response for 5.0×10−12 g mL−1 cTnI did not signif-
icantly change when stored in 10 mM PB (pH 7.4) at 4 °C for
10 days (RSD=6.4 %).

To assess the selectivity of the ECL-PB biosensingmethod,
we attempted to determine cTnI in the presence of CRP, a
specific marker for coronary events, sTnI, an isoform of tro-
ponin I, and other proteins including IgG, BSA, albumin
chicken egg protein, and PSA. As shown in Fig. 6, a signifi-
cant increase in the ECL signal was induced by the interaction
of the peptide-modified electrode with cTnI compared to that
for CRP and sTnI. Moreover, the ECL intensities increased
with increased concentrations of cTnI. No obvious increases
for CRP and sTnI were observed with increased concentra-
tions of CRP and sTnI from 3.0×10−12 to 7.0×10−11 g mL−1.
Therefore, the developed strategy has sufficient selectivity,
and cTnI could be unequivocally identified in the presence

Table 1 Analytical performance for cTnI

Detection technique Recognition molecular Amplify Linear range DL References

Colorimetric Antibody Gold nanoparticle – 0.3 ng mL−1 [4]

Colorimetric Antibody Gold nanoparticle 0.01–5 ng mL−1 0.01 ng mL−1 [5]

Fluorescence Antibody Dyed nanoparticle 0.003–9.6 μg L−1 0.0020 μg L−1 [7]

EC Peptide – 0–10 μg mL−1 0.34 μg mL−1 [1]

EC Antibody Gold nanoparticles 0.2~12.5 ng mL−1 0.2 ng mL−1 [8]

EC Antibody Enzyme 0.2–10 ng mL−1 148 pg mL−1 [9]

CL Antibody Gold nanoparticles 0.1–100 ng mL−1 0.027 ng mL−1 [10]

ECL Antibody Gold nanoparticles 0.1–1000 ng mL−1 0.06 ng mL−1 [11]

ECL Antibody Gold nanoparticles 2.5–10,000 pg mL−1 2 pg mL−1 [12]

ECL Peptide – 0.78–78 ng mL−1 0.12 ng mL−1 [20]

ECL Peptide Liposome 0.01–5.0 ng mL−1 4.5 pg mL−1 [21]

ECL Peptide Gold nanoparticles 3.0~70 pg mL−1 0.5 pg mL−1 This work

EC electrochemistry, CL chemiluminescence

Fig. 6 The increased ECL intensities at the peptide-modified electrode
after incubation with different concentrations of cTnI/CRP/sTnI. Mea-
surement conditions are the same as those in Fig. 5

Fig. 5 ECL profiles of the peptide-modified electrode after incubation
with different concentrations of cTnI. The calibration curve of cTnI
(inset). The concentrations of cTnI: a blank, b 3.0×10−12 g mL−1, c
5.0×10−12 g mL−1, d 7.0×10−12 g mL−1, e 3.0×10−11 g mL−1, f 5.0×
10−11 g mL−1, and g 7.0×10−11 g mL−1. The measurement conditions:
0.10 M PBS (pH 7.4) containing 50 mM TPA, applied potential, 0.95 V
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of CRP and sTnI. A significant increase for 5.0×10−11 g mL−1

cTnI was obtained (ΔI=5268), while a slight increase in the
ECL intensity for 1.0×10−9 g mL−1 of other proteins was
found (BSA (ΔI=195), PSA (ΔI=195), lgG (ΔI=391), and
egg protein (ΔI=433), see Fig. S6 in Supporting Informa-
tion). Clearly, these proteins did not interfere with the detec-
tion of cTnI. These results prove that the specific peptide
selected by phage display technology has sufficient affinity
for cTnI.

Conclusion

Here, a sensitive and simple ECL peptide-based biosensing
method for cTnI was developed by incorporating Ru(bpy)3

2+-
AuNPs-peptide as an ECL nanoprobe and a specific peptide as
a molecular recognition element. Notably, AuNPs not only
can capture numerous signal-generating molecules, resulting
in high ECL intensity, but also can capture a significant
amount of the peptide, providing poly binding motif. This
novel Ru(bpy)3

2+-AuNPs-peptide probe displayed better
ECL responses than the Ru1-labeled peptide probe. A low
detection limit of 0.5 pg mL−1 was obtained for cTnI.
Additionally, the proposed method is simple and time-
saving because it avoids the complicated, uncontrollable
synthesis of functional nanoparticles. Moreover, it utilizes
a facile labeling procedure compared with other multi-
label strategies involved in most ruthenium complex-
encapsulated liposomes. Finally, the utilization of sand-
wich model could enhance the selectivity of the biosensor
of cTnI. The strategy presented here could be easily ex-
tended to develop other ECL and electrochemical biosens-
ing methods for other disease-related proteins.

Acknowledgments Financial support from The National Science
Foundation of China (nos. 21475082, 21375084, 21275095), the Natural
Science Basic Research Plan in Shaanxi Province of China (nos.
2013KJXX-73, 2014LQ2065, 2013SZS08-Z01), and Program for Inno-
vative Research Team in Shaanxi Province (No. 2014KCT-28) are greatly
acknowledged.

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.

References

1. Wu J, Cropek DM, West AC, Banta S (2010) Development of a
troponin I biosensor using a peptide obtained through phage dis-
play. Anal Chem 82:8235–8243

2. Akanda MR, Aziz MA, Jo K, Tamilavan V, Hyun MH, Kim S,
Yang H (2011) Optimization of phosphatase- and redox cycling-
based immunosensors and its application to ultrasensitive detection
of troponin I. Anal Chem 83:3926–3933

3. McDonnell B, Hearty S, Leonard P, O’Kennedy R (2009) Cardiac
biomarkers and the case for point-of-care testing. Clin Biochem 42:
549–561

4. Guo H, Yang D, Gu C, Bian Z, He N, Zhang J (2005) Development
of a low density colorimetric protein array for cardiac troponin I
detection. J Nanosci Nanotechnol 5:2161–2166

5. Wu WY, Bian ZP, Wang W, Wang W, Zhu JJ (2010) PDMS gold
nanoparticle composite film-based silver enhanced colorimetric de-
tection of cardiac troponin I. Sensors Actuators B 147:298–303

6. Nandhikonda P, HeagyMD (2011) An abiotic fluorescent probe for
cardiac troponin I. J Am Chem Soc 133:14972–14974

7. Järvenpää ML, Kuningas K, Niemi I, Hedberg P, Ristiniemi N,
Pettersson K, Lövgren T (2012) Rapid and sensitive cardiac tropo-
nin I immunoassay based on fluorescent europium(III)-chelate-
dyed nanoparticles. Clin Chim Acta 414:70–75

8. Bhalla V, Carrara S, Sharma P, Nangia Y, Suri CR (2012) Gold
nanoparticles mediated label-free capacitance detection of cardiac
troponin I. Sensors Actuators B 161:761–768

9. Ko S, Kim B, Jo SS, Oh SY, Park JK (2007) Electrochemical detec-
tion of cardiac troponin I using a microchip with the surface-
functionalized poly(dimethylsiloxane) channel. Biosens Bioelectron
23:51–59

10. Cho IH, Paek EH, Kim YK, Kim JH, Paek SH (2009)
Chemiluminometric enzyme-linked immunosorbent assays
(ELISA)-on-a-chip biosensor based on cross-flow chromatography.
Anal Chim Acta 632:247–255

11. Li F, Yu Y, Cui H, Yang D, Bian Z (2013) Label-free
electrochemiluminescence immunosensor for cardiac troponin I
using luminol functionalized gold nanoparticles as a sensing plat-
form. Analyst 138:1844–1850

12. Shen W, Tian D, Cui H, Yang D, Bian Z (2011) Nanoparticle-based
electrochemiluminescence immunosensor with enhanced sensitivity
for cardiac troponin I usingN-(aminobutyl)-N-(ethylisoluminol)-func-
tionalized gold nanoparticles as labels. Biosens Bioelectron 27:18–24

13. Sun D, Hamlin D, Butterfield A, Watson DE, Smith HW (2010)
Electrochemiluminescent immunoassay for rat skeletal troponin I
(Tnni2) in serum. J Pharmacol Toxicol Methods 61:52–58

14. Zhou Y, Zhuo Y, Liao N, Chai Y, Yuan R (2014) Ultrasensitive
electrochemiluminescent detection of cardiac troponin I based on
a self-enhanced Ru(II) complex. Talanta 129:219–226

15. HuLXG (2010)Applications and trends in electrochemiluminescence.
Chem Soc Rev 39:3275–3304

16. Miao W (2008) Electrogenerated chemiluminescence and its
biorelated applications. Chem Rev 108:2506–2553

17. Iqbal SS, Mayo MW, Bruno JG, Bronk BV, Batt CA, Chambers JP
(2000) A review of molecular recognition technologies for detec-
tion of biological threat agents. Biosens Bioelectron 15:549–578

18. Petrenko VA, Vodyanoy VJ (2003) Phage display for fetection of
biological threat agents. J Microbiol Meth 53:253–262

19. Park JP, Cropek DM, Banta S (2010) High affinity peptides for the
recognition of the heart disease biomarker troponin I identified
using phage display. Biotechnol Bioeng 105:678–686

20. Wang C, Qi H, Qiu X, Gao Q, Zhang C (2012) Homogeneous
peptide-based electrogenerated chemiluminescence method for de-
termination of troponin I. Anal Methods 4:2469–2474

21. Qi H, Qiu X, Xie D, Ling C, Gao Q, Zhang C (2013) Ultrasensitive
electrogenerated chemiluminescence peptide-based method for the
determination of cardiac troponin I incorporating amplification of
signal reagent-encapsulated liposomes. Anal Chem 85:3886–3894

22. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-
based method for rationally assembling nanoparticles into macro-
scopic materials. Nature 382:607–609

28 Gold Bull (2015) 48:21–29

www.sp
m.co

m.cn



23. Qi H, Peng Y, Gao Q, Zhang C (2009) Applications of
nanomaterials in electrogenerated chemiluminescence biosensors.
Sensors 9:674–695

24. Cao X, Ye Y, Liu S (2011) Gold nanoparticle-based signal amplifi-
cation for biosensing. Anal Biochem 417:1–16

25. Guo Y, Guo S, Fang Y, Dong S (2010) Gold nanoparticle/carbon
nanotube hybrids as an enhanced material for sensitive amperomet-
ric determination of tryptophan. Electrochim Acta 55:3927–3931

26. Thavanathan J, Huang NM, Thong KL (2014) Colorimetric detec-
tion of DNA hybridization based on a dual platform of gold nano-
particles and grapheneoxide. Biosens Bioelectron 55:91–98

27. Shan M, Li M, Qiu X, Qi H, Gao Q, Zhang C (2014) Sensitive
electrogenerated chemiluminescence peptide-based biosensor for
the determination of troponin I with gold nanoparticles amplifica-
tion. Gold Bull 47:57–64

28. Tian DY, Duan CF, Wang W, Cui H (2010) Ultrasensitive
electrochemiluminescence immunosensor based on luminol func-
tionalized gold nanoparticle labeling. Biosens Bioelectron 25:
2290–2295

29. Duan R, Zhou X, Xing D (2010) Electrochemiluminescence
biobarcode method based on cysteamine-gold nanoparticle conju-
gates. Anal Chem 82:3099–3103

30. Tokel NE, Bard AJ (1972) Electrogenerated chemiluminescence.
IX. Electrochemistry and emission from systems containing Tris(2,
2'-bipyridine)ruthenium(II) dichloride. J Am Chem Soc 94:2862–
2863

31. Sun X, Du Y, Dong S, Wang E (2005) Method for effective immo-
bilization of Ru(bpy)3

2+ on an electrode surface for solid-state
electrochemiluminescene detection. Anal Chem 77:8166–8169

32. Zhang L, Xu Z, Sun X, Dong S (2007) A novel alcohol dehydro-
genase biosensor based on solid-state electrogenerated chemilumi-
nescence by assembling dehydrogenase to Ru(bpy)3

2+–Au nano-
particles aggregates. Biosens Bioelectron 22:1097–1100

33. Mao L, Yuan R, Chai Y, Zhuo Y, Yang X, Yuan S (2010) Multi-
walled carbon nanotubes and Ru(bpy)3

2+/nano-Au nano-sphere as
efficient matrixes for a novel solid-state electrochemiluminescence
sensor. Talanta 80:1692–1697

34. Li M, Zhang M, Ge S, Yan M, Yu J, Huang J, Liu S (2013)
Ultrasensitive electrochemiluminescence immunosensor based on
nanoporous gold electrode and Ru-AuNPs/graphene as signal la-
bels. Sensors Actuators B Chem 181:50–56

35. Wu M, He L, Xu JJ, Chen H (2014) RuSi@Ru(bpy)3
2+/Au@Ag2S

nanoparticles electrochemiluminescence resonance energy transfer
system for sensitive DNA detection. Anal Chem 86:4559–4565

36. Li M, Nie M, Wu Z, Liu X, Chen G (2011) Colorimetric and
luminescent bifunctional Ru(II) complex-modified gold nanoprobe
for sensing of DNA. Biosens Bioelectron 29:109–114

37. Gui G, Zhuo Y, Chai Y, Liao N, Zhao M, Han J, Zhu Q, Yuan R,
Xiang Y (2013) Supersandwich-type electrochemiluminescenct
aptasensor based on Ru(phen)3

2+ functionalized hollow gold

nanoparticles as signal-amplifying tags. Biosens Bioelectron 47:
524–529

38. Elmes RBP, Orange KN, Cloonan SM, Williams DC,
Gunnlaugsson T (2011) Luminescent ruthenium(II) polypyridyl
functionalized gold nanoparticles; their DNA binding abilities and
application as cellular imaging agents. J AmChem Soc 133:15862–
15865

39. Frens G (1973) Controlled nucleation for the regulation of
the particle size in monodisperse gold suspensions. Nat Phys
Sci 241:20–22

40. Carvalhal RF, Freire RS, Kubota LT (2005) Polycrystalline gold
electrodes: a comparative study of pretreatment procedures used
for cleaning and thiolself-assembly monolayer formation.
Electroanalysis 17:1251–1259

41. Patil S, Datar S, Rekha N, Asha SK, Dharmadhikari CV (2013)
Charge storage and electron transport properties of gold nanoparti-
cles decorating a urethane-methacrylate comb polymer network.
Nanoscale 5:4404–4411

42. Grabar KC, Freeman RG, Hommer MB, Natan MJ (1995)
Preparation and characterization of Au colloid monolayers. Anal
Chem 67:735–743

43. Brust M, Bethell D, Schiffrin DJ, Kiely C (1995) Novel gold-
dithiolnano-networks with non-metallic electronic properties. Adv
Mater 7:795–797

44. Qi H, Ling C, Huang R, Qiu X, Shangguan L, Gao Q, Zhang C
(2012) Functionalization of single-walled carbon nanotubes with
protein by click chemistry as sensing platform for sensitized elec-
trochemical immunoassay. Electrochim Acta 63:76–82

45. Bardea A, Katz E, Willner I (2000) Probing antigen-antibody inter-
actions on electrode supports by the biocatalyzed precipition of an
insoluble product. Electroanalysis 14:1097–1106

46. Jena BK, Raj CR (2006) Electrochemical biosensor based on inte-
grated assembly of dehydrogenase enzymes and gold nanoparticles.
Anal Chem 78:6332–6339

47. Miao W, Choi JP, Bard AJ (2002) Electrogenerated chemilumines-
cence 69: the tris(2,2′-bipyridine)ruthenium(II), (Ru(bpy)3

2+)/Tri-n-
propylamine (TPrA) system revisited-a new route involving
TPrA•+cation radicals. J Am Chem Soc 124:14478–14485

48. Engstrom RC, Johnson KW, DesJarlais S (1987) Characterization
of electrode heterogeneity with electrogenerated chemilumines-
cence. Anal Chem 59:670–673

49. Terskikh AV, Le Doussal JM, Crameri R, Fisch I, Mach JP, Kajava
AV (1997) BPeptabody^: a new type of high avidity binding pro-
tein. Proc Natl Acad Sci 94:1663–1668

50. Vance D, Shah M, Joshi A, Kane RS (2008) Polyvalency: a prom-
ising strategy for drug design. Biotechnol Bioeng 101:429–434

51. ChenZ ZY (2007) Gold nanoparticle-modified ITO electrode for
electrogenerated chemiluminescence: well-preserved transparency
and highly enhanced activity. Langmuir 23:11387–11390

Gold Bull (2015) 48:21–29 29

www.sp
m.co

m.cn


	Electrogenerated...
	Abstract
	Introduction
	Experimental
	Reagents and apparatus
	Preparation of Ru(bpy)32+-AuNPs and Ru(bpy)32+-AuNPs-peptide
	Immobilization of capture probe
	ECL measurements

	Results and discussion
	Characterization of Ru(bpy)32+-AuNPs-peptide
	Feasibility of the ECL-PB biosensing method for cTnI
	Analytical performance for the determination of cTnI

	Conclusion
	References


